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Introduction

Cancer has always been one of the leading causes of death around the world. It is crucial that we detect

the signals for cancer or tumor development early on. For the current common method to detect cancer

progression, it is usually a painful and time-consuming process for the patient. Current methods consist of

computerized tomography (CT) scans, X-ray, and molecular testing for cancer-specific markers

(tumor-antigen testing). These methods are often invasive (sticking needle through skin) and are unable to

detect cancers throughout the entire body. They also have mediocre accuracy and poor predictive

capabilities, leading to greater chance of overdiagnosis and overtreatment of non-malignant disease.

Further, methods that target specific cancers are not conclusive of detection of cancers in other parts of

the body. The detection is generally limited to certain surfaces of the skin and cannot be conclusive of all

parts of organs. Also, doctors often cannot accurately decipher the signals of cancer through x-ray

pictures, or other types of pixelated analysis. Those types of digital evidence could be misleading due to

the blurriness and fragmentation.

Although these methods are proven useful to some degree, we need to continue research to find a better

method to make the detection more accurate and less invasive.

With the current in-practice methods consisting of approaches that are generally invasive, current research

prospects in genomics include utilizing blood samples to analyze certain DNA fragments through liquid

biopsy sequencing. Liquid biopsy is a blood test that is used to detect cancerous cell DNA and tumor

cells. This research has led to a focus on the presence and count of circulating tumor DNA (ctDNA) to

track the efficacy of curative treatment and prevalence of cancer in the body. Cell free DNA (cfDNA) has

also been a biomarker of interest because certain signatures in the cfDNA can provide information

regarding the tissue of origin of cancerous cells. However, the current limitations of analyzing this data

include lack of data and also other experimental effects. There is a lot of variability in the ctDNA count

during different stages of cancer and different areas of the body. For instance, Colon, breast, pancreas, and

liver have large amounts of ctDNA while glioma, thyroid, renal cancer have low malignancies from the

ctDNA.



Computational approaches to early detection include applying simple machine learning models such as

linear, logistic regression and random forest algorithms. Major concerns in analyzing cfDNA data include

batch effects. Batch effects represent disparity in sampling methods for data and different experimental

conditions. These varied conditions of data collection could lead to misleading conclusions, mainly

mistaking actual results for batch effect.

Thus, while these computational methods to current problems do exist, many are still in development, at

the discretion of available data.

An improved processing of liquid biopsy, DELFI (DNA evaluation of fragments for early interception)

has arisen as a method that is more sensitive than traditional approaches and would be able to detect

tumor signatures earlier by having greater sensitivity to aggressive changes in the DNA fragmentation

pattern. And once patients are diagnosed, we are most often interested in the survival status and the

survival time of the patient with respect to different treatments. Using this DELFI sequencing technique

as a metric for survival status and timeline, we may be able to develop a better estimate for a patient’s

survival based on treatment factors and the stage of cancer that they are experiencing. Our approach by

studying the effects of this new sequencing technique can give valuable insight into how DELFI compares

as an estimator to traditionally invasive procedures such as CT scans and MRIs. Although it is possible

that this DELFI score will not have good predictive power for the progression of cancer, we will still be

able to measure the biological impacts of traditional metrics such as the stage/severity of cancer and the

type of treatment that patients receive.

Related Work

DELFI (DNA evaluation of fragments for early interception) has been validated as a method for early

detection of cancer. Researchers in [1] have expanded on liquid biopsy of cell-free DNA by attempting to

identify the origin and molecular features of the cfDNA using machine learning techniques. This study

compared the DNA fragmentation profiles of healthy individuals to those with varying types of cancer

(breast, colorectal, lung, ovarian, pancreatic, gastric or bile duct cancer) and found that the fragmentation

patterns of healthy individuals were similar to those derived from white-blood cells while those with

cancer had altered fragmentation patterns. The study then used the collected fragmentation patterns to

predict the presence of different types of cancer using a gradient tree-boosted model and yielded an

overall AUC value of 0.94 across 7 types of cancers. These results give us underlying information that



DELFI is useful in predicting a potential presence of cancer, but still leaves the question of whether or not

it is good for monitoring the progression of cancer. Below is the workflow of the DELFI methodology.

In [2], researchers applied the DELFI detection methodology to real-world lung cancer data. This study

proved that DELFI yields good results on real-world data and compared to current methods of detection

(CT scans and X-ray). They generated a DELFI score from DELFI detection that cross validated the

results of whether or not the cfDNA profiles had characteristics of an individual with or without lung

cancer which we will use in our analyses of this DELFI methodology. The data that we will use is also a

subset taken from this study: n = 97 patients used to determine the relationship between prognosis and

DELFI score. The DELFI scores in this subset ranged from 0.3-0.95 and included only patients that did

indeed have some stage of lung cancer at the time of study. Given the nature of this data, we looked into

survival analysis techniques to model the effect of DELFI score and survival time effectively.



The data includes several features in which the survival status is 0, meaning the patient has not yet

experienced the survival status event, or in this data, death. In this scenario, we cannot use regular

analysis as there are a significant number of samples that have a survival status of 0. In these types of

situations, we need to utilize survival analysis to analyze censored samples. From [3] these samples would

be right-censored, as the timeline variable, survival time, is greater than the study time, or they had not

experienced the status variable when the study had ended. The most traditional approach for this situation

would be to estimate the hazard function or the survival function based on the data. There are several

models in this field of survival analysis to estimate the probability of the status event (binary variable)

occurring based on the time-to-event variable. Primarily they are used for preliminary analysis and to

determine feature relationships with the status event variable. In our approach, we want to utilize these

methods for preliminary analysis to determine feature significance and then for multivariate analysis to

predict status event and time-to-event.

Methodology

Workflow

The approach to analyze the significance of DELFI score in the data includes a standard exploratory

analysis of the dataset to determine any anomalies in features and also the general trend of cancer data.

Then we conducted typical survival analysis such as fitting the data to the kaplan meier model, comparing

categorical features using a log-rank test, and modeling initial cox proportional hazards models to

measure feature significance when combined in one model. These initial methods all compare the

relationship between the target variable (days alive) and the feature of interest. After initial feature



analysis, we will use several survival models to predict the time-to-event, in our event the survival_time

variable based on the features in the data.

There are several methods in which the survival function (probability of survival vs timeline variable) can

be predicted. In the survey [4], writers summarized several different methods. In selecting methods for

our approaches, we wanted to survey a large range of methods. Thus, we started at traditional statistical

algorithms such as the non-parametric Kaplan Meier model and extended that to regularized versions of

the Cox Proportional Hazards model. To evaluate some more complex models, which may be able to

capture the complexity of potentially correlated intermediate features, we chose the RSF (Random

Survival Forest) model and also the Survival SVM (Support Vector Machine) model due to their ability to

directly predict survival times given a training set of data with censored and uncensored samples.

Metrics in survival analysis also vary greatly. Results from [5] showed that there are varying metrics that

work well for different types of outcomes for this type of analysis. In most situations, the concordance

index (C-index) works well to measure the pairwise relationships between the binary event outcome

(death event) and the time-to-event variable (days alive). Since we are attempting to predict the days alive

variable as a measure of survival, another metric that has proven to be successful in many situations is the

log weighted mean absolute error (MAE). The log weighted mae provides a traditional metric known for

typical machine learning tasks while also adjusting it for censored samples with weighting. The logarithm

of the MAE allows us to compare large differences in the absolute error of days alive predictions.



Model Building Workflow

To build and systematically test the different models, there are a few aspects to consider. First, we must

preprocess the data to a format that will be ‘fair’ for all the models, meaning we need to have an even

split of censored and uncensored data points, while also one-hot encoding multi-class categorical features.

The most significant part of model building is tuning the hyperparameters such as the regularization rate

for the models and also guaranteeing the split of censored to uncensored samples so that our models are

trained fairly. Using a stratified k-fold on the time-to-event variable (death event) we can guarantee that

there will always be a predetermined percentage of samples that are censored. This way, there can always

be a valid c-index calculated from the specific split and will make our models train on relatively equal

data.

Specifically, we use the models from the sksurv [6] including the ridge, LASSO, and elastic net

regularized cox proportional hazards model and both survival SVM and RSF models. And we also use the

metric calculations from [7] to evaluate each of our models for final cross validation scores. For the

models that do not directly predict the days alive variable, we will take the median value of the calculated



population survival curve as the predicted survival time. This median value represents a 50% chance or

toss up that the patient will die.

Feature Significance

To measure the feature significance of the models that have measurable coefficients (linear proportional

cox models, accelerated failure time model), we can compare the magnitude and sign of the coefficients

that contribute towards the final trained model. Coefficients that have greater magnitude (either positive

or negative) have greater significance as they carry greater weight towards the final target result

(predicted days alive).

Conclusion

Best Model



We discovered the best model was the survival SVM model with the linear kernel setting. While it is not

surprising that the model with a relatively complex decision pattern was able to generalize well to unseen

data, it is fairly surprising to see that the RSF performed the worst out of all the linear models. Given the

small sample size (97), the RSF could have overfit the data and thus yielded worse results for the same

training and test sets as the linear models did. These results demonstrate that the simple models generally

could perform very well with just some regularization added to it. The best regularized linear model was

the ElasticNet model, which yielded a weighted MAE of 557.951 and log weighted MAE of 0.899. These

results are not so far from the best model that we determined. In context however, these models are not

the best models that could have been obtained. This can also be attributed to the small sample size. In

context, an MAE of ~483 days is very inconsistent for patients who could actually rely on these

prediction times. To drop this value there could be a inclusion of more data and more time spent with

tuning hyperparameters.

Feature Significance

In terms of the features, there are a few significant findings. The conclusions include the significance of

DELFI in predicting the survival status and also the individual feature significance of the treatment given

to the patient and the stages of cancer.



For the treatment feature, it is evident that having no treatment has significant effects compared to any of

the other features. The steep curve represents the severe dropoff in probability of survival in a short time

frame, which is to be expected. Cancer patients that receive no treatment are expected to die quicker.

Surprisingly, chemotherapy and radiation with curative intent performed the best, with the longest curve.

The other treatments also performed much better than the no treatment category. However, between the

other categories there seems to be some overlap, leading us to believe that there could be correlation

between these other categories.



For the stage feature, it seems that it is consistent with what we already know about stage and cancers.

Our original belief is that the stage of cancer is correlated with the survival time. The more aggressive the

cancer, or the greater the stage, the shorter the patient will survive. This seems to be the case as well, as

stage 4 curve has the steepest curve, and stage 1 having the longest curve, representing a higher survival

probability as time goes on. It is interesting to note that stage 2 has correlation with the other stages,

meaning it could be a tampering factor when fitting initial models.

When we take a look at the DEFLI score values for the different linear models, it is evident that the

delfi_score variable is one of the largest magnitude variables, after no treatment variable in most cases.



The delfi_score variable is vastly significant in our analyses and was not regularized to 0 in even the lasso

model, meaning it holds some significance in predicting the target survival time of the patient.

Biological Implications

Biologically, our conclusions are relatively consistent with what the medical industry already knows

about cancers. In our scenario, we studied lung cancers. We confirmed existing knowledge that the stage

of cancer is correlated with how long a patient lives. The more aggressive cancer, the shorter the patient

lives. Furthermore, we confirmed biologically which treatments currently work best on patients. And this

confirmed that chemotherapy, surgery, and radiation treatment tended to lengthen the survival curves of

patients and thus gave them higher probability of survival after these first line oncological treatments.

One major biological implication of the delfi score is that it is biologically significant in predicting the

survival outcome and survival time of a lung cancer patient. It is evident that with greater delfi score, the

patient will observe a shorter survival time. Overall, the delfi score is significant and can be used in future

studies as a metric for whether or not a patient will survive or rather how long they will survive.
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