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Introduction

The dataset offers a detailed look into the sales transactions of an online retail
business. The data includes various columns such as InvoiceNo, StockCode,
Description, Quantity, InvoiceDate, UnitPrice, CustomerID, and Country, providing a
comprehensive view of each transaction. The exploratory data analysis reveals some
key insights: the average quantity per transaction is around 13 items, and the average
unit price is approximately £3.28. Most transactions (80) are recorded in the United
Kingdom, followed by 20 in France. The dataset reflects a diverse range of products
and customer interactions, with invoice numbers and customer IDs indicating a variety
of transactions.

In this project, our primary objective is to predict the unit price of items based on
various features in the dataset, such as quantity, purchase date, and country groupings.
To achieve this, we will employ four distinct approaches, with the first focusing on
clustering and the subsequent three on predictive analysis. The first approach would be
the comparison between RFM Customer Segmentation Analysis and K-means
Clustering. The other predictive approaches are Regression Analysis, Decision Tree
Analysis, and Random Forest Prediction.

At the conclusion of each approach, we will employ metrics such as R-squared
(R?) and Mean Squared Error (MSE) to evaluate the accuracy and predictive capability
of each model. This will enable us to compare the effectiveness of different
methodologies in predicting unit prices and to identify the best-performing models for
potential practical applications.

One thing to note is that we will also try the time series prediction for total
sales(total amount of monetary value spent on orders per month), although we might
not have enough data to fully tune the requirements of the algorithms. This portion is not
the task of the project.

Sample data snippet:



InvoiceNo StockCode Description Quantity InvoiceDate UnitPrice CustomerlD Country

WHITE HANGING ST United

536365 85123A HEART T-LIGHT 6 2.55 17850.0 -
HOLDER 08:26:00 Kingdom

WHITE METAL 2010-12-01 United
LANTERN 08:26:00 ' Kingdom

CREAM CUPID
536365 HEARTS COAT
HANGER

Exploratory Data Analysis

536365

2010-12-01 United
08:26:00 ’ Kingdom

1. Handling Missing Data:
o The columns “Description” and “CustomerID” contain missing data, with
1,454 and 135,080 missing entries respectively.
o Due to the substantial amount of missing data and limited predictive value,
we have decided to exclude the “CustomerID” column from our analysis.
o For missing “Description” entries, we uniformly replaced them with “No
Description.”
2. Handling ‘InvoiceDate’ Time Variable:
o We extracted day, month, year, and time components, saving them as
additional columns.
3. Handling ‘Quantity’ and ‘UnitPrice’:
o Converted these columns from ‘object’ type to ‘int’ and ‘float’ respectively
for ease of calculation.
4. Country vs. Number of Orders:
o The majority of the data originates from UK clients, accounting for 91.43%
of the total dataset.



Popular country to order online products
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5. New Columns: ‘isWeekend’ and ‘OfficeTime’:
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‘isWeekend’: Indicates whether the purchase was made on a weekend
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Item Count

6. Order Patterns by Time:

o Most orders, regardless of weekday or weekend, are placed during office
hours.

o There are significantly more purchases on weekdays compared to
weekends.

7. Insights from ‘Description’ for non-UK dataset:

o The most frequently purchased item is “Postage,” with 1,112 orders and a
total quantity of 3,143. The least popular item is “ZINC WIRE
SWEETHEART LETTER TRAY,” purchased only once with 8 units.

o The most ordered item by quantity is “RABBIT NIGHT LIGHT” with 16,394
units across 163 orders. The least ordered item is “KINGS CHOICE
GIANT TUBE MATCHES,” with just one unit sold.

Count Quantity

Description

POSTAGE 1112 3143

REGENCY CAKESTAND 3 TIER 341 2985

ROUND SNACK BOXES SET OF4 WOODLAND 317 6890
PLASTERS IN TIN WOODLAND ANIMALS 225 5234
PLASTERS IN TIN CIRCUS PARADE 210 4086
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Description

RABBIT NIGHT LIGHT

MINI PAINT SET VINTAGE

PACK OF 72 RETROSPOT CAKE CASES
SPACEBOY LUNCH BOX

DOLLY GIRL LUNCH BOX

BLACK MINI TAPE MEASURE

Count Quantity

15494
12685
11529
8378
7569

8. Stock Code Count and Sales Value by Month:
o October records the highest stock code reads and sales values.
o There is a notable correlation between stock code frequency and sales

values across months.
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9. Sales and Quantity by Country (Excluding UK):

e EIRE and the Netherlands show notable trends: EIRE with higher sales
value but lower quantities, and the Netherlands with higher quantities but

lower sales value.

Total quantity purchased and total sale for each country
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11. Item Purchases by Country by Unit Price:

e France stands out for ordering items priced over £4,000. Singapore and
Hong Kong follow with the second and third highest unit price purchases.
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12.Sales Value Per Month in the UK:

e November peaks in sales with a total value of £1.37 million.
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13.Top 10 Purchased Items in the UK by Quantity:



Total Items

e The most purchased item is “Paper craft, little birdie.” The second is
“Medium ceramic top storage jar.” Surprisingly, “No Description” ranks
third, highlighting a significant number of unlabeled items.
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14.Insights from ‘Total Sales in UK’:
o Peak purchasing days are Friday and Tuesday, with over 1.7M+ total sales

each. Sunday has the least activity, with 645k total sales.

Total Sales each day in Uk
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Model Method Algorithms

1. RFM Customer Segmentation Analysis

o Goal: Categorize customers into loyalty groups based on purchasing
behavior. Our initial approach involves segmenting customers using RFM
(Recency, Frequency, Monetary) analysis to identify distinct shopping
patterns. In parallel, we will implement k-means clustering. The aim here
is to compare and contrast the clusters formed by the RFM model and the
k-means algorithm, gaining insights into different customer behaviors.

o Methodology:

Skewness : 1,25

Conducted RFM (Recency, Frequency, Monetary) analysis on the
UK dataset, which has no missing data.

Recency: Time since last purchase; Frequency: Number of total
orders; Monetary: Unit price multiplied by quantity.

Density plots for RFM variables are right-skewed, indicating recent
purchases, frequent small orders, and a majority of orders valued
between 0 - 25,000.

Boxplot quantiles used to assign RFM scores. Recency scores
inversely related to value (higher score, less value), while
Frequency and Monetary scores are directly related (higher score,
better value).

Created “RFM_Group” and “RFM_Score” columns for
segmentation.

Developed groups of “loyalty level” classification: 'Passionate
Customer', 'Frequent Shopper', 'Casual Shopper', 'Once a Year'
based on quantiles of RFM scores.

Skewness ; 18.67 Skewness ; 20.2
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2. K-means Clustering
o Goal: Segment client data using k-means algorithm.
o Methodology:

Transformed negative or zero values to positive for consistency.




m Applied log-transformation to address skewness in RFM variables.

m Normalized and scaled data post-transformation.
m Used elbow technique to determine optimal cluster number,
selecting 3 as ideal.

Skewness : -0.61 Skewness : -0.24 10.32

Sum of square Distances

Elbow Techinque to find the optimal cluster size
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3. Time Series Prediction
o Goal: Predict future monthly total sales values.
o Methodology:
m Analyzed monthly sales data, noting stable trends with a peak in
late 2011.
m Employed SARIMAX and Exponential Smoothing Models for
prediction, despite having only one year of data.
4. Regression Analysis
o Goal: Predict unit price using various predictors. The second approach
involves classical regression analysis, utilizing both numerical and
categorical variables to predict the unit price of purchased items. This
method will help us understand the direct relationships between various
factors and the unit price.
o Methodology:




m Response variable (y): unit price. Predictors (X): scaled quantity per
invoice, dummy variables for quantity range, price range, and date
range.

m Quantity range will be separated into 6 groups: (0,2] , (2,5], (5,8],
(8,11], (11,14], and (14,5000].

m Price range will be separated into 5 groups: (0,1], (1,2], (2,3], (3,4],
and (4,20].

m Date range will be separated into 4 groups: (0,3], (3,6], (6,9], and
(9,12].

m Applied linear regression model to UK-only data set.

UnitPrice Quantitylnv qr (0, qr(2. qr.(5. qr(8, qr (11, qr_ (15 pr(0, pr (1. pr(2. pr(3. pr(4. dr (0, dr_(3.

2] 5] 8] 11] 14]  5000] 1] 2] 3] 4] 20] 3] 6]
2.55 40 0 0 1 0 0 0 0 0 1 0 0 0 0
3.39 40 0 0 1 0 0 0 0 0 0 1 0 0 0
2.75 40 0 0 1 0 0 0 0 0 1 0 0 0 0

Note: the picture didn'’t fit the columns of dr_(6,9] and dr(9,12]. They should be after
dr_(3,6]

5. Decision Tree
o Goal: Cluster similar purchase habits and predict unit price. In our third
approach, we plan to use a decision tree model to group similar purchase
habits and predict the unit price of items. This method will enable us to
visualize and understand the decision paths that lead to different unit price
outcomes.
o Methodology:
m Utilized a single decision tree.
m Uncertainty about performance compared to regression, depending
on non-linear relationships between predictors and unit prices.
6. Random Forest
o Goal: Achieve accurate predictions of unit price.
o Methodology:
m An advanced approach using multiple trees to balance variance
and bias.
m Anticipated as the most accurate method due to its computational
complexity.



Results of Analysis

Frequency

1.

RFM Clustering Results
o RFM Analysis:
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Recency vs Frequency: Right-skewed; passionate customers are
concentrated within 0-100 recency days. 'Once a year' customers
are found mostly on the second half of the x-axis.

Monetary vs Frequency: All loyalty levels are clustered in the
bottom left corner, with only passionate shoppers showing high
frequency and monetary values.

Monetary vs Recency: Vertical clustering around the y-axis.
Passionate shoppers often have high monetary values, with some
casual shoppers also showing relatively high monetary and recency
values.
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2. K-means Clustering Results
o Clustering Patterns:

m Recency vs Frequency: Clusters 0 and 1 are close to the x-axis,
resembling 'frequency' and 'once a year' shoppers. Cluster 2 aligns
with passionate shoppers.

m  Monetary vs Frequency: Majority are in cluster 2 (passionate
shoppers), with some in cluster 1 (frequent shoppers).
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m Monetary vs Recency: Clusters 0 and 1 are near the y-axis, with
cluster 2 extending to high monetary values, indicating passionate

shoppers.
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Monetary
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o Comparison with RFM Clustering: K-means tends to combine casual
and frequent shoppers, highlighting their similarities. It distinctively
separates passionate shoppers and 'once a year' customers.

3. Time Series Analysis Results

o Weekly Decomposition:
m Initial 8-week prediction for 2012 indicates higher sales than most
of the original data.
o Monthly Decomposition:
m First 6-month prediction for 2012 shows stable, high sales
compared to original data.
o Model Comparison: SARIMAX model exhibits more significant changes
in slopes compared to Exponential Smoothing Model. However, none of
the models seems to provide a valid prediction.
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4. Regression Analysis Results
o Regression Equation: Y =-2.20e+11 + [complex regression formula with
various predictors].
o Y =-2.20e+11 + (-2.00e-02)*Quantitylnv + (3.40e-01)*gr_(0, 2] +
(1.00e-02)*qr_(2, 5] + (1.40e-01)*qr_(5, 8] + (1.30e-01)*qr_(8, 11] +
(1.10e-01)*qr_(11, 14] + (5.00e-02)*qr_(15, 5000] + (-2.58e+09)*pr_(0, 1]



+ (-2.58e+09)*pr_(1, 2] + (-2.58e+09)*pr_(2, 3] + (-2.58e+09)*pr_(3, 4] +
(-2.58e+09)*pr_(4, 20] + (2.22e+11)*dr_(0, 3] + (2.22e+11)*dr_(3, 6] +
(2.22e+11)*dr_(6, 9] + (2.22e+11)*dr_(9, 12]
o Key Predictors: Range of prices and dates are the most impactful, with
their beta values being extremely high.
o Performance Metrics:
m MSE: 1.736
m MAE: 0.715
m R%0.755
m Best Score: 0.754
o Interpretation: High R? indicates good model performance, but there is
room for improvement.

=== Start report for regressor LinearRegression ===
Tuned Parameters: {'fit_intercept': True}
Best score is ©.7539421725312966
MAE for LinearRegression
©.715300133373285
MSE for LinearRegression
1.735768891612557
R2 score for LinearRegression
©.7558627023964682
=== End of report for regressor LinearRegression ===

Coefficient: [-1.50303291e-82 3.37094175e-01 1.26723828e-02 1.38602028e-01
1.29628801e-01 1.13763055e-01 5.14208560e-02 -2.58005342e+09

-2.58005342e+09 -2.58005342e+09 -2.58005342e+09 -2.58005341e+09
2.22221731e+11 2.22221731e+11 2.22221731e+11 2.22221731e+11]
Intercept: -219641677711.5463

5. Decision Tree Analysis Results

o Best Parameters: {'min_samples_leaf": 2, 'min_samples_split": 2}

o Performance Metrics:
s MSE: 1.703
s MAE: 0.650
s Rz 0.760
m Best Score: 0.755

o Interpretation: Slight improvement over the linear regression model in

terms of error reduction and R2.



=== Start report for regressor DecisionTreeRegressor ===
Tuned Parameters: {'min_samples_leaf': 2, 'min_samples_split': 2}
Best score is ©.7548462400045522
MAE for DecisionTreeRegressor
0.6497908210831888
MSE for DecisionTreeRegressor
1.78368981236412257
R2 score for DecisionTreeRegressor
©.7596729299769934
=== End of report for regressor DecisionTreeRegressor ===

6. Random Forest Analysis Results
o Best Parameters: {'min_samples_leaf": 2, 'min_samples_split": 3,
'n_estimators': 100}
o Performance Metrics:
m MSE: 1.674
m MAE: 0.647
m Rz 0.764
m Best Score: 0.761
o Interpretation: The random forest model shows the best performance
with the lowest error terms and highest R?, indicating improved predictive
accuracy.

=== Start report for regressor RandomForest ===
Tuned Parameters: {'min_samples_leaf': 2, 'min_samples_split': 3, 'n_estimators': 160}
Best score is ©.7605854598099446
MAE for RandomForest
0.6467029308604814
MSE for RandomForest
1.6741378983571233
R2 score for RandomForest
©.7637595565742857
=== End of report for regressor RandomForest ===



Regressor Comparison
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Further discussion

In our supervised learning methods, the random forest model demonstrated the
best prediction accuracy and the lowest error rate compared to the regression and
decision tree methods. However, the differences among these three methods are quite
small, particularly in terms of their R? values. When we take into account factors such as
the complexity of the model and the ease of interpreting results, random forest might not
be the optimal choice.

Comparing k-means and RFM clustering, both methods provided similar results.
The classic RFM clustering identified four distinct groups of shopping habits, while
k-means effectively merged two middle groups (frequent and casual shoppers) into one.



This indicates that both models are consistent and validate each other, highlighting that
the data exhibits clear signals from shoppers who buy frequently and those who rarely
make purchases.

A major challenge we encountered in time series prediction was the dataset's
duration, which spanned only one year. Typically, our algorithms require multiple years
of data to train the model effectively across several cycles. With our limited data, we
were unable to establish and validate our predictions robustly. Obtaining more
comprehensive data over a longer period is crucial for enhancing the accuracy of our
sales amount predictions.

If more data were available, particularly more numerical variables, we could
explore more complex models such as polynomial regression, variable selection
through stepwise regression, and regularization techniques. These advanced methods
could potentially improve accuracy, but there's also a risk of overfitting that must be
carefully managed.

With additional time, we would like to delve deeper into both unsupervised and
supervised machine learning algorithms to further explore the relationships within each
column of our dataset. We are particularly interested in conducting more dimension
reduction analysis, such as PCA, to reinforce our findings regarding the most distinct
groups in our RFM analysis: the passionate shoppers and those who shop just once a
year.



